Calculus AB

5-3
Inverse Functions

Show that f and g are inverse functions. (pg 349)

$$
\begin{aligned}
\text { 2) } \begin{array}{rl}
f(x)=3-4 x & g(x)=\frac{3-x}{4} \\
\text { a) } \begin{aligned}
f(g(x)) & =3-4\left(\frac{3-x}{4}\right) \\
& =3-3+x \\
& =x
\end{aligned} \\
\text { b) } g(f(x)) & =3-(3-4 x) \\
4 & =\frac{3-3+4 x}{4}=x
\end{array}
\end{aligned}
$$

Definitions

function- a rule or a map that assigns each input to exactly one output.
2) one-to-one function - Function where each output is assigned from exactly one input.
3) monotonic function - strictly increasing

Blue Collar Definition - Two functions are inverses if
they cancel each other out.

Graphical Definition - Two functions are inverses if
$(1,2) \rightarrow(2,1)$ their graphs are reflections about $y=x . \quad x+y$ ss are

Mathematician's Definition - Two functions $f(x)$ and $g(x)$ are inverses iff

$$
\begin{aligned}
& \text { if } f(g(x))=x \\
& \text { c) } g(f(x))=x
\end{aligned}
$$

Sketch the inverse of each graph. Is the inverse a function?

Use a graphing utility to graph the function. Determine whether it is one-to-one on its entire domain.

Find the inverse function of f.

$$
\begin{array}{ll}
\text { 32) } f(x)=3 \sqrt[5]{2 x-1} & x=3 \sqrt[5]{2 y-1} \\
f^{-1}(x)=\frac{\left(\frac{x}{3}\right)^{5}+1}{2} & \frac{x}{3}=5 \sqrt[5]{2 y-1} \\
& \left.\frac{(x}{3}\right)^{5}=2 y-1 \\
& \frac{\left(\frac{x}{3}\right)^{5}+1}{2}=y
\end{array}
$$

Use the derivative to determine whether the function is strictly monotonic on its entire domain and therefore has an inverse function.
44) $f(x)=(x+a)^{3}+b$

yes yes, mono tonic. $\begin{aligned} & \text { is a point of inflection, } \\ & \text { The graptly will bestrity } \\ & \text { increasing ord decreasing. }\end{aligned}$
increasing or decreasing
In this case, increasing.
$F^{\prime \prime}(x)=6(x+a)$ $=6(-a+a)$ $=0$ p.o.i
because the critical poin

Find $\left(f^{-1}\right)^{\prime}(a)$ for the function f and the real number a.
A a is an input For tho inverse
72) $f(x)=5-2 x^{3}$; autput For Foxs
$F^{\prime}(x)=-6 x^{2}$
$\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$
$7=5-2 x^{3}$
$2=-2 x^{3}$
$-1=x^{3}$
$-1=x$
$F(-1)=7$
$F^{-1}(7)=-1$

Derıvatıves of Tnverses

Given $f(x)$ and its inverse $f^{-1}(x), \quad f^{\prime}(c)=\frac{1}{\left(f^{-1}\right)^{\prime}(c)}$
$m=\frac{\Delta y}{\Delta x}$
Translate the above definition into words:

the slope of the function and its inverse are reciprocals

Let f be a function that is differentiable on an interval I.
If f has an inverse function g, then g is differentiable at any x for which $f^{\prime}(g(x)) \neq 0$ and

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))} \quad \text { or } \quad\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

