

Use the derivative to determine whether the function is strictly monotonic on its entire domain and therefore has an inverse function.

44)
$$f(x) = (x + a)^{2} + b$$

 $F(x) = 3(x + a)^{2}$
 $0 = 3(x + a)^{2}$
 $x = -a$ is a c.p.
 ges , monotonic.
 ges , monotonic.
 $f'(b) = 6(x + a)$
 $= 6(-a + a)$
 $= 0$ p.o.i
because the critical point
is a point of inflection.
The graph will be strictly
increasing or decreasing.
In this case, increasing.

Given
$$f(x)$$
 and its inverse $f^{-1}(x)$, $f'(c) = \frac{1}{(f^{-1})'(c)}$
Translate the above definition into words:
the slope of the Function and
its inverse are reciprocals
Let f be a function that is differentiable on an interval I .
If f has an inverse function g , then g is differentiable at any x
for which $f'(g(x)) \neq 0$ and
 $g'(x) = \frac{1}{f'(g(x))}$ or $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$

Assignment: Pg. 349 1 - 45 odd, 71 - 93 odd.	